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Using the membrane model which is based on brick-wall model, we calculated the free
energy and entropy of Gibbons–Maeda dilation black hole due to arbitrary spin fields.
The result shows that the entropy of a scalar field and the entropy of a fermion field have
similar formulas. There is only a coefficient difference between them. Furthermore,
both entropies depend on the degeneracy of the field.
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1. INTRODUCTION

In theoretical physics, the thermodynamics of black holes remains an enigma,
it turns out to be a junction of general relativity, quantum mechanics, and statistical
physics.

Since Bekenstein and Hawking proposed, in 1970s, that the black hole en-
tropy is proportional to the area of the event horizon (Bekenstein, 1972, 1973, 1974;
Hawking, 1975; Kallosh, 1993), much efforts are devoted to study the statistical
origin of the black hole entropy. One such effort is the widely used brick wall model
proposed by ’t Hooft (1985). By using this model, ’t Hooft investigated the statisti-
cal properties of a free scalar field in the Schwarzschild black hole background and
obtained an expression for entropy in terms of the area of the event horizon which
verifies the proportional relationship between them. Furthermore, when the cutoff
parameter satisfies a certain condition, the entropy can be written asS= Ah/4,
while for the case when the cutoff parameter tends to zero, the entropy would
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be divergent, which was explained as due to the infinite density of states at the
vicinity of the horizon. Another different but actually equivalent approach (Callan
and Wilczek, 1994; Kabat and Strassler, 1994) is adopted by (Bombelliet al.
(1986) and Srednicki (1993). Solodukhin used Gibbons–Hawking Euclidean path
integral approach (Gibbons and Hawking, 1977) to study the quantum corrections
to the entropy of a Schwarzschild black hole (Solodukhin, 1995a,b) starting with
the one-loop effective action of scalar matter. In quantum mechanics, geometric
entropy satisfies the following assumptions: If particles are scalar bosons obeying
Bose–Einstein statistics, the entropy obtained is conventionally called the boson
entropy; if the quantum-mechanical geometric entropy is calculated by count-
ing the fermions particle states, the corresponding entropy is called the fermion
entropy.

Since the mid of 1990s, such problems have aroused much interest among
many researchers (Brown, 1995; Carlip, 1995; Carlip and Teitelbion, 1995; Cretic
and Youm, 1996; Cognola and Lecca, 1998; de Alwis and Ohta, 1995; Demers
et al., 1995; Filaet al., 1994; Gao and Shen, 2001; Gao and Shen, 2002a,b;
Ghosh and Mitra, 1994, 1995; Gubseret al., 1996; Hawkinget al., 1995; Ichinose
and Satoh, 1995; Jacobsonet al., 1995; Kabatet al., 1995; Kim, 1997; Larssen
and Wilczek, 1995, 1996; Lee and Kim, 1996a,b; Leeet al., 1996b; Mann and
Solodukhin, 1996; Pinto-Neto and Soares, 1995; Russo, 1995; Shen, 2000a,b,c;
Shen, 2002; Shen and Chen, 1998a,b; Shen and Chen, 1999a,b,c; Shen and Chen,
2000, 2001; Shen and Cheng, 2001; Shen and Gao, 2002a,b; Shenet al., 1997;
Solodukhin, 1995a,b,c; Solodukhin, 1996; Srednicki, 1993; Susskind and Uglum,
1994; Teitelbion, 1995; Zhouet al., 1995). But up to now, the method mainly used
by people is brick wall model; furthermore, to get a result proportional to the area,
we must use the small-mass approximation and neglect the part nonproportional to
area. Considering the divergence of the wave function near the event horizon and
the introduction of cutoff, why not assume that the free energy of black hole only
comes from a layer in the infinity of event horizon? Such a physical picture is very
obvious.

Membrane model (Gao and Liu, 2000; Li and Zhao, 2000) assumes that the
region in which wave function is not zero isr H + ε ≤ r ≤ r H + ε + δ. That is,
the integral interval ofr is only in a membrane.

In this paper, by using a membrane model, we obtained the free energy and
entropy of gravitational field (spins= 2), electromagnetic field (spins= 1) and
neutrino field (spins= 1

2). The formulas of entropy are given. We found that the
entropy of scalar field and fermions field have similar formulas. There is only a
coefficient difference between them. This is similar to the former (Cognolla and
Lecca, 1998; de Alwis and Ohta, 1995; Larsen and Wilczek, 1995; Shen, 2000a;
Shen and Chen, 1999b,c; Zhouet al., 1995). But both entropies depend on the
degeneracy of the fields.
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2. FIELD EQUATION

The metric of Gibbons–Maeda dilaton black hole writes (Gibbons and Moeda,
1988; Solodukhin, 1995b)

ds2 = (r − r+)(r − r−)

R2
dt2− R2

(r − r+)(r − r−)
dr2

− R2(dθ2+ sin2 θ ) dϕ2, (1)

where

r± = M ±
√

M2+ D2− P2− Q2, (2)

D = P2− Q2

2M
, (3)

R2 = r 2− D2. (4)

The parametersM , Q, andP are the mass, the electronic charge, and the magnetic
charge of the hole, respectively.

Choose the null tetrad as follows:

lµ =
(

R2

(r − r+)(r − r−)
, 1, 0, 0

)
, (5)

nµ = 1

2

(
1,− (r − r+)(r − r−)

R2
, 0, 0

)
, (6)

mµ = 1√
2R

(
0, 0, 1,

i

sinθ

)
, (7)

m̄µ = 1√
2R

(
0, 0, 1,− i

sinθ

)
. (8)

The corresponding covariant null tetrad is

lµ = 1

2

(
1,− R2

(r − r+)(r − r−)
, 0, 0

)
, (9)

nµ = 1

2

(
(r − r+)(r − r−)

R2
, 1, 0, 0

)
, (10)

mµ = − R√
2

(0, 0, 1,i sinθ ), (11)

m̄µ = − R√
2

(0, 0.1,−i sinθ ). (12)
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The above null tetrad satisfies null vector conditions

lµlµ = nµnµ = mµmµ = m̄µm̄µ = 0; (13)

pseudo-orthogonality conditions

lµnµ = −mµm̄µ = 1, (14)

lµmµ = lµm̄µ = nµmµ = nµm̄µ = 0; (15)

and metric conditions

gµν = lµnν + nµlν −mµm̄ν − m̄µmν . (16)

The nonvanishing spin coefficients are (Garfinkleet al., 1991)

ρ = − r

r 2− D2
, (17)

α = −β = − 1

2
√

2
√

r 2− D2
ctgθ , (18)

µ = −1

2

r (r − r+)(r − r−)

(r 2− D2)2
, (19)

γ = 1

4

[
2r − (r+ − r−)

r 2− D2
− 2r (r − r+)(r − r−)

(r 2− D2)2

]
. (20)

Only one of Weyl tensors is not zero, i.e.,

92 = − r

2

2r − (r+ − r−)

(r 2− D2)2
+ r 2(r − r+)(r − r−)

(r 2− D2)3

+ D2

2

(r − r+)(r − r−)

(r 2− D2)3
. (21)

Equations (17–21) show that the GHS (Garfinkle–Horowitz–Strominger)
metric is of Petrov-typeD. Using the result of Teukolsky (Newman and Penrose,
1962; Teukolsky, 1973), the field equation of spins= 1

2, 1, and 2 for the source
free case can be combined into

[D − (2s+ 1)ρ][1− 2sγ + µ]8+s

−{[δ + (2s− 2)α][ δ̄ − 2sα] + (2s− 1)(s− 1)92}9+s = 0,

[1+ (2s− 2)γ + (2s+ 1)µ][ D − ρ]8−s

−{[ ¯δ + (2s− 2)α][δ − 2sα] + [2s− 1](s− 1)92}8−s = 0, (22)

where

D ≡ lµ∂µ = R2

(r − r+)(r − r−)
∂t + ∂r , (23)
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1 ≡ nµ∂µ = 1

2
∂t − 1

2

(r − r+)(r − r−)

R2
∂r , (24)

δ ≡ mµ∂µ = 1√
2R

(
∂θ + i

sinθ
∂ϕ

)
, (25)

δ̄ ≡ m̄µ∂µ = 1√
2R

(
∂θ − i

sinθ
∂ϕ

)
. (26)

The first one of Eqs. (22) is for spin statesp = sand the other one forp = −s
respectively. Make transformations below (Newman and Penrose, 1962)

8+s,8−s = r p−s
pRl E (r )pYm

l (θ , ϕ) e−i Eu. (27)

Put Eqs. (17–21), (23–27) into Eqs. (22), we obtain the radial equation

(r − r+)(r − r−)∂2
r pRl E (r )+ (p+ 1)(2r − r+ − r−)∂r p Rl E (r )

+ p
r (r − r+)(r − r−)

r 2− D2
∂r p Rl E (r )

+
[

E2 (r 2− D2)2

(r − r+)(r − r−)
+ A(r )+ i E B(r )− λ2

]
pRl E = 0, (28)

where

A(r ) = − 2pD2

r 2− D2
+ 2p(4p− 5)r 2

r 2− D2
− (4p2+ 3)(r+ + r−)r

r 2− D2

− (2p+ 1)r+r−
r 2− D2

+ (4p2+ 3p+ 7)
r 2(r − r+)(r − r−)

(r 2− D2)2

+ (2p2− 3p+ 1)
D2(r − r+)(r − r−)

(r 2− D2)2
, (29)

B(r ) = 4pr − p(r 2− D2)
2r − (r+ − r−)

(r − r+)(r − r−)
, (30)

and the angular equation[
1

sinθ
∂θ (sinθ∂θ )+ 1

sin2 θ
∂2
ϕ +

2i p cosθ

sin2 θ
∂ϕ

]
pYm

l (θ , ϕ)

− [ p2ctg2θ + p− λ2] pYm
l (θ , ϕ) = 0. (31)

Equation (31) shows thatpYm
l is the spin-weighed spherical harmonic

(Goldberget al., 1967; Teukolsky and Press, 1974) and the separation constantλ

satisfies

λ =
√

(l − p)(l + p+ 1), (32)
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where

l ≥ |p|, −l ≥ m≥ l . (33)

3. FREE ENERGY AND ENTROPY

In this section we will calculate the black hole entropy via membrane model.
As a simplest model, membrane model assumes that in the vicinity of event horizon
there is a layer of radiation whose thickness isδ and whose distance to the event
horizon isε. The entropy of black hole is identified with that of the membrane. So
the boundary condition of the wave function reads

8(r ) = 0, whenr ≤ r+ + ε, (34)

8(r ) = 0, when, r ≥ r+ + ε + δ, (35)

whereε ¿ r+, δ ¿ r+, r+ is the event horizon of black hole.
Let

pRl E (r ) = ei Z , (36)

and using WKB approximation, we obtain

K 2 = (∂r Z)2 = (r 2− D2)2

(r − r+)(r − rr )
E2

+ 1

(r − r+)(r − r−)
A(r )− (l − p)(l + P + 1)

(r − r+)(r − r−)
, (37)

where K is the radial numbers of wave.
The constraint of semiclassical quantum condition imposed onK is

given by

nπ =
∫ r++ε+δ

r++ε
Kdr, (38)

wheren is a nonnegative integer. As same as the brick wall model, energyE is
positive and wave numberK is real.

According to the ensemble theory, the free energy is given by

βF = ∓
∑

ln(1± e−βω), (39)

whereβ is the inverse of Hawking temperature, i.e.,

TH = κ

2π
= 1

4π

r+ − r−
r 2+ − D2

. (40)
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Looking the states of energy as continuous and transform summation into
integration, we obtain ∑

→
∫ ∞

0
d Eg(E), (41)

whereg(E) is the density of states, i.e.

g(E) = d0(E)

d E
, (42)

0(E) is the number of the microscopic states, i.e.

0(E) =
∑

p

∑
l

(2l + 1)n. (43)

Transforming the summation ofl into integration and requiringK ≥ 0, then
we obtain

0(E) =
∑

p

∫
(2l + 1)dl

1

π

∫
Kdr

= 1

π

∑
p

∫ r++ε+δ

r++ε
dr
∫ lmax

|p|
dl(2l + 1)[(r − r+)(r − r−)]−

1
2

[
(r 2− D2)2E2+ A(r )− (l − p)(l + p+ 1)

] 1
2

= 2

3π

∑
P

∫ r++ε+δ

r+h+ε
dr [(r − r+)(r − r−)]−

1
2

[(r 2− D2)2E2+ A(r )− (|p| − p)]
3
2 . (44)

The free energy can be written as

F = − 2

3π

1

β

∑
P

∫ ∞
0

E3d E

eβE ∓ 1

∫ r++ε+δ

τ+h+ε
dr

(r 2− D2)3

(r − r+)2(r − r−)2
, (45)

Fbosons= −4ωπ3

90β4

∫ r++ε+δ

r++ε
dr

(r 2− D2)3

(r − r+)2(r − r−)2
, (46)

F fermions= −7

8

4ωπ3

90β4

∫ r++ε+δ

r++ε
dr

(r 2− D2)3

(r − r+)2(r − r−)2
, (47)

whereω is the degeneracy due to spin. For the gravitational and electromagnetic
fields we haveω = 2; for the neutrino and scalar fields we haveω = 1.

Considering the relation between entropy and free energy below

S= β2∂F

∂β
, (48)
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we obtain (whenr+ 6= r−)

Fbosons= ω

360
· r+ − r−

ε
· δ

ε + δ , (49)

Sfermions= 7

8

ω

360
· r+ − r−

ε
· δ

ε + δ . (50)

Put

δ2
0 =

2ε2
0

15
, (51)

where

δ2
0 =

∫ r++ε

r+

√
r 2− D2

(r − r+)(r − r−)
dr ≈ 2

√
ε

r 2+ − D2

r+ − r−
(52)

is the proper distance fromr+ to r+ + ε. By Eqs. (50–53), we obtain

Sbosons= ω · Ah

48πε2
0

δ

ε + δ , (53)

Sfermions= 7

8
ω · Az

48πε2
0ε

δ

ε + δ , (54)

where

Ah = 4π (r 2
+ − D2) (55)

is the area of the event horizon.
For the extreme black hole (r+ − r−), the area of the event horizon is zero,

however, the entropy is not zero, i.e.,

Sext
bosons= ω

(
r 2
+ − D2

βε

)3

ln

(
1+ δ

ε

)
, (56)

Sext
fermions=

7

8
ω

(
r 2
+ − D2

βε

)3

ln

(
1+ δ

ε

)
. (57)

The areaAh of the event horizon is zero while the entropySext is not zero. In
particular, whenP = 0, M2 = Q2

2 .
Equations (54–55) and (57–58) show that Gibbons–Maeda dilaton black hole

entropies due to scalar field (s= 0, 1, 2) and fermions field (s= 1
2) have similar

formulas. There is only a coefficient difference between them. They both depend
on the degeneracy of the fields.
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